analyze_basic_metrics#

Workflow for analyzing basic metrics.

Working location structure:

(name)
├── analysis
│   └── analysis.BASIC_METRICS
│       └── (name)_(key).BASIC_METRICS.csv
└── results
    └── (name)_(key)_(seed).csv

Data from results are processed into analysis.BASIC_METRICS.

Flows

run_flow

Main analyze basic metrics flow.

run_flow_process_results

Analyze basic metrics subflow for processing results.

run_flow(context: ContextConfig, series: SeriesConfig, parameters: ParametersConfig) None[source]#

Main analyze basic metrics flow.

Calls the following subflows, in order:

  1. run_flow_process_results()

run_flow_process_results(context: ContextConfig, series: SeriesConfig, parameters: ParametersConfig) None[source]#

Analyze basic metrics subflow for processing results.

Processes parsed simulation results and compiles into a single dataframe. If the combined dataframe already exists for a given key, that key is skipped.

Configs

ContextConfig

Context configuration for analyze basic metrics flow.

ParametersConfig

Parameter configuration for analyze basic metrics flow.

SeriesConfig

Series configuration for analyze basic metrics flow.

class ContextConfig[source]#

Context configuration for analyze basic metrics flow.

working_location: str#

Location for input and output files (local path or S3 bucket).

class ParametersConfig[source]#

Parameter configuration for analyze basic metrics flow.

regions: list[str]#

List of subcellular regions.

ds: float | None = None#

Spatial scaling in units/um.

dt: float | None = None#

Temporal scaling in hours/tick.

class SeriesConfig[source]#

Series configuration for analyze basic metrics flow.

name: str#

Name of the simulation series.

seeds: list[int]#

List of series random seeds.

conditions: list[dict]#

List of series condition dictionaries (must include unique condition “key”).